Space Physics Interactive Data Resource
SPIDR

SPIDR web-services guide

Version 2.3

November 30, 2007

Contents

[oo 13 Tox 1 o] [P SPPPP VPRSPPI 3
SPIDR WED-SEIVICES UESCIIPLION ...ttt bbb 3
FIIESIVICE ...ttt bbbt bbb 5

LI (0= Vo | T | - SRR PPI 5
SPIAISEIVICE ...t bbbttt bbbt 5

© JEETADIES ...t reene e 5

® JEUINMVENTONY ...t 6

® JEIMELATALA ..o 7

L0 [1 B - F PP PP RPN 7

Lo IS =[] 1SRRI 8

@ JEIEIEMENTIPEIIOUS ... 8

® JEISTAIONPEIIOUSc.viiieiieiee et 8
Embedded clients for working with SPIDR WeD-SErviCes.cccccevveviiiieie e, 10
SPIANCIHIENT. ...ttt b ettt 10
FHIECTIENT ... ettt bbbt e b e e ne et e e 11
MELAdALACTIENT ..ot e st beene e sre e reereeereenne e 11
Getting data with embedded clients. Usage eXample.coevveieiieiieie e 13

REIATE TN OIMALION ... s 13

Introduction

Nowadays, due to the rapid growth of Internet technologies, more attention is being paid to the
development of distributed network applications. Such distributed technologies as DCOM,
CORBA, Java RMI appeared too complex and difficult to use, because they tried to implement
too many features. None of these technologies became a universally accepted standard for
distributed applications development. Web-services appeared as an alternative to the
technologies mentioned above. They allow for easy and efficient integration between different
applications across the network.

A Web service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service in a manner prescribed by its
description using SOAP messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards. Form more information see the “Related
information” section.

SPIDR uses web-services to connect to remote resources, and also provides its own web-
services, which allow other applications to use SPIDR itself as a data source, aggregating a
number of heterogeneous data source (see Figure 1).

A

-4—— | SpidrService

- SPIDR > Data Sources

=

Figure 1 — SPIDR web-services

FileService

A

Client
Application

SPIDR web-services overview

Currently SPIDR provides two separate web-services: SpidrService and FileService. A URL for
calling a web-service may look like the following:

SpidrService: http://spidr.ngdc.noaa.gov/spidr/services/SpidrService

Geophysical data request to the web-service is made according to the following scheme (see
Figure 2). A SOAP request is passed to the JAX-RPC web-service and is translated into an SQL
statement by an overloaded method of a Java-class, specific for each database (the appropriate
class is chosen according to the configuration file). SQL query results are then transformed into a
data model object, which is subsequently serialized to a packed binary file to be exported via
HTTP protocol. The link to this file is passed to the client as a result of the web-service

http://spidr.ngdc.noaa.gov/spidr/services/SpidrService

operation. This link can be used to download the file, which will be used for further processing,
for example — for visualization.

FileService:

Local user
workstation

Data request
SpidrClient

Remote SPIDR
server

WS DataService

SQL

Local Datafile URL

filename

Download

A

» Subsetting

\J

Databases

'

Formatting

copy of
Datafile

E@

Save to disk

Figure 2 — SpidrService operation

http://spidr.ngdc.noaa.gov/spidr/services/FileService

Web Services technology with SOAP protocol is used for loading data into SPIDR databases
using web-interface, client programs, e-mail, and also for synchronizing databases on different
SPIDR nodes (see Figure 3). When FileService is called, the uploaded file is copied to the server,
then it is processed and loaded into the database. For synchronization purposes one SPIDR node
may call FileService on another node and so on.

To get WSDL descriptions of the web-services you should call them with “wsdI” option:

SpidrService WSDL.:

http://spidr.ngdc.noaa.gov/spidr/services/SpidrService?wsdl

FileService WSDL:

http://spidr.ngdc.noaa.gov/spidr/services/FileService?wsdl

Local user
workstation

Loader options

Remote SPIDR
server

WS FileService

FileClient
) Loader
Loading log
Parser
local
Filename .
Datafile
e
Upload
copy of >
Datafile Datafile

Figure 3 — FileService operation

» Databases

Mirror SPIDR

server
Sync

Web Service

http://spidr.ngdc.noaa.gov/spidr/services/FileService
http://spidr.ngdc.noaa.gov/spidr/services/SpidrService?wsdl
http://spidr.ngdc.noaa.gov/spidr/services/FileService?wsdl

FileService

Table 1 shows FileService methods and their corresponding use-cases.

Tabmmna 1 — FileService methods

Methods Use cases

loadData Load data in various formats into SPIDR table

e loadData

This method is used to load data in various formats into SPIDR table. It returns a string,
containing the loading log information. Its call arguments are listed in Table 2.

Table 2 — loadData call arguments

Name Type Description
userlD xsd:string User name
userType xsd:string User type
dataTable xsd:string SPIDR table name

Data format. Each SPIDR table has a list of predefined

dataFormat xsd:string formats, available for upload.

fileName xsd:string File name. Defines a local path to the uploaded file.
fileParams xsd:string Additional parameters
mirror xsd:boolean The flag, which controls mirroring to other SPIDR nodes.

SpidrService

Table 3 shows SpidrService methods and their corresponding use-cases.

Table 3 — SpidrService methods

Methods Use cases
getTables Obtain a list of SPIDR tables, belonging to a given view-group.
getinventory Obtain inventory for a given table, element and time interval.
getData Export data for a given table, element, station and time interval.
getStations Obtain a list of stations, belonging to a given SPIDR table.
getElementPeriods Get a list of available time periods for a given element.
getStationPeriods Get a list of available time periods for a given station
syncData Export data for synchronization with other SPIDR nodes.
e getTables

This method is used to obtain a list of SPIDR tables, belonging to a given view-group. It returns
a string, containing a space-separated list of SPIDR table names. Its call arguments are listed in
Table 4. Available view-groups are listed in Table 5.

Table 4 — getTables call arguments

Name Type Description

viewGroup xsd:string SPIDR view-group name

Table 5 — SPIDR view-groups

Name Description
GOES GOES - Space Environment Monitor
IMF IMF OMNI - Interplanetary Magnetic Field by Hour
IMFMin IMF - Interplanetary Magnetic Field by Minute
geomind Geomagnetic Indices
SSN Solar Data
lono lonospheric Data
Geom Geomagnetic Minute Means
Geom_hr Geomagnetic Hourly Means
Geom_yr Geomagnetic Annual Means
Intermag Geomagnetic Minute Means for SWR
Geom_yrtab Geomagnetic Annual Means (tables)
SWR Clean SWR Geomagnetic Variations
Hpinoaa HP1 NOAA Data
Hpidmsp HP1 DMSP Data
CRI Cosmic Ray Data (preliminary)
CR14096 Cosmic Ray Data (4096 format)
CRIGen Cosmic Ray Data (general format)
Rstn Radio Solar Telescope Network (RSTN)
sunlmages Solar Images
DMSP DMSP Images Visible and IR
DMSP_SSJ4 DMSP SSJ4
events Space Weather Events
SXI GOES - Solar X-ray Imager
nightLight Nighttime Lights of the World
POES POES - Polar Orbiting Environmental Satellites
Amie AMIE derived Indices

e getlnventory

This method is used to obtain inventory for a given table, element and time interval. Returns a
SOAP Array. The structure of the array is described in table 7. getinventory call arguments are
listed in Table 6.

Table 6 — getinventory call arguments

Name Type Description
table xsd:string SPIDR table name
station xsd:string Station code
element xsd:string Element name
dateFrom xsd:string Time interval lower boundary as YYYYMMDD
dateTo xsd:string Time interval upper boundary as YYYYMMDD

Table 7 — getlnventory returned array structure

Name Type Description
Elem xsd:string Element name
numRecs xsd:int Number of records for a given month
Stn xsd:string Station code
table xsd:string SPIDR table name
yrMon xsd:int Month as YYYYMM.
yrMon2 xsd:int --- same as yrMon ---

e getMetadata

Works the same as getlnventory, but returns the following XML string:

<table name=...>

<station name=...>
<element name=...>
<date>YYYYMM</date>
<\element>

<\station>

<\table>

e getData

This method is used to export data for a given table, element, station and time interval. It returns
a URL link to the exported file. Its call arguments are listed in Table 8.

Table 8 — getData call arguments

Name Type Description

Table xsd:string SPIDR table name.

Stn xsd:string Station code

Elem xsd:string Element name

dayFromStr | xsd:string Time interval lower boundary as YYYYMMDD

dayToStr xsd:string Time interval upper boundary as YYYYMMDD
Export format. Allowed export formats are: ASCII, XML,

format xsd:string Matlab, IIWG (iononospheric data only), WDC (geomagnetic
data only)

samplingStr | xsd:string Data sampling in minutes. 0 — minimal possible sampling.

e getStations

This method is used to get a list of stations, belonging to a given SPIDR table. getStations call
arguments are listed in Table 9. Returns a SOAP Array with the structure described in Table 10.

Table 9 — getStations call arguments

Name Type Description
table xsd:string SPIDR table name
Tabmuma 10 — getStations returned array structure

Name Type Description
SType xsd:string SPIDR table name
lat xsd:float Station latitude (degrees)
lon xsd:float Station longitude (degrees)
meridianTime | xsd:byte --- always 0 ---
name xsd:string Station name
stn xsd:string Station code

e getElementPeriods

This method is used to get a list of available time periods for a given element. getElementPeriods
call arguments are listed in Table 11. Returns a SOAP Array with the structure described in
Table 12.

Table 11 — getElementPeriods call arguments

Name Type Description

table xsd:string SPIDR table name

Table 12 — getElementPeriods returned array structure

Name Type Description
elem xsd:string Element name
numRecs xsd:int --- always 0 ---
stn xsd:string --- always null ---
table xsd:string SPIDR table name
yrMon xsd:int Time interval lower boundary as YYYYMMDD
yrMon2 xsd:int Time interval upper boundary as YYYYMMDD

e getStationPeriods

This method is used to get a list of available time periods for a given station. getElementPeriods
call arguments are listed in Table 13. Returns a SOAP Array with the structure described in
Table 14.

Table 13 — getStationPeriods call arguments

Name Type Description
table xsd:string SPIDR table name
Table 14 — getStationPeriods returned array structure
Name Type Description
elem xsd:string --- always null ---
numRecs xsd:int --- always 0 ---
stn xsd:string Station code
table xsd:string SPIDR table name
yrMon xsd:int Time interval lower boundary as YYYYMMDD
yrMon2 xsd:int Time interval upper boundary as YYYYMMDD
e syncData

This method is used for exporting data for synchronization with other SPIDR nodes. syncData
call arguments are listed in Table 15. Returns a SOAP Map, wrapped in a SOAP Vector. The
keys and values of the returned map are listed in Table 16.

Table 15 — syncData call arguments

Name Type Description
Table xsd:string SPIDR table name
Stn xsd:string Station code
Elem xsd:string Element name
dayFromStr | xsd:string Time interval lower boundary as YYYYMMDD
dayToStr xsd:string Time interval upper boundary as YYYYMMDD
format xsd:string Export format
samplingStr | xsd:string Data sampling in minutes. 0 — minimal possible sampling.

Table 16 — syncData returned keys and values

Key Value type Description

fileName xsd:string Local path to the exported file

dataTvoe xsd:string Data format. Each SPIDR table has a list of predefined
yp formats, available for upload.

fileParams xsd:string Additional parameters

Returned values, described in table 16 are used as arguments for loadData method of FileService

on the remote SPIDR node.

Embedded clients for working with SPIDR web-services.

SPIDR includes three embedded clients for working with its native web-services. These are
SpidrClient, FileClient, and MetadataClient. They can be called from command prompt with

using following commands:

> java spidr.export.SpidrClient <parameters>
> java spidr.export.FileClient <parameters>
> java spidr.export.MetadataClient <parameters>

Each client is described in details below.

SpidrClient

This client is used for exporting data from SPIDR. It downloads the exported file on the local
machine and returns its name. Command line parameters for SpidrClient are listed in Table 17.

Table 17 — Command line parameters for SpidrClient

Parameter

Description

(- | --help)

Prints usage help

(-1] —-link) <url>

Sets the web-service URL

(-u | --user) <name>

Sets user name

(-p | --passwd) <password>

Sets password

(-t | --table) <table>

Sets SPIDR table name

(-s | --station) <station>

Sets station code

(-e | --element) <elements>

Sets element name

(-d | --day) <day>

Sets a single day for the data request. <day> must be given
YYYYMMDD. If you need to obtain data within a time
interval, use d1 and d2 parameters.

(-d1 | --dayfrom) <day>

Sets upper boundary of the time interval. <day> must be
given as YYYYMMDD.

(-d2 | --dayto) <day>

Sets lower boundary of the time interval. <day> must be
given as YYYYMMDD.

(-f | --format) <format>

Sets export format. <format> may be one of the following:
ASCII, XML, Matlab, I'TWG (ionospheric data only), WDC
(geomagnetic data only)

(-ts | --timestep) <sampling>

Sets data sampling in minutes.

SpidrClient usage example:

Command:

> java spidr.export.SpidrClient -1
http://spidr.ngdc.noaa.gov/spidr/services/SpidrService
-u userl -p passl -t Geom -e X -s BOU -dl 19980101 -d2 19980102

Output:

spidr Geom BOU X 19980101 19980102 1129879850751.txt.zip

FileClient

This client is used for loading data into SPIDR. Command line parameters for FileClient are
listed in Table 18.

Ta6muia 18 — Command line parameters for FileClient

Parameter Description

(-h | --help) Prints usage help

(-1] --link) <url> Sets the web-service URL

(-u | --user) <name> Sets user name

(-p | --passwd) <password> Sets password

(-t | --table) <table> Sets SPIDR table name

(-s | --source) <source> Sets data source code. This code is used for logging purposes.

(-d | --data) <filename> Sets path to the uploaded file

(-f | --format) <format> Sets format of the uploaded file. Each SPIDR table has a list
of predefined formats, available for upload.

(-0 | --options) <options> Sets additional options. <options> may be one of the
following: “replace”, “insert”, “delete”.

FileClient usage example:

Command:

> java spidr.export.FileClient -1
http://spidr.ngdc.noaa.gov/spidr/services/FileService
-u userl -p passl -t Geom -s dmedv -d D:/data/AAE9708M.WDC -f geomMinWdca -o r

Output:

Loading to SPIDR node 'http://clustl.wdcb.ru/axis/services/FileService' user 'userl'
data file 'D:\data\AAE9708M.WDC' format 'geomMinWdca' with options 'r' as 'dmedv'
before call.invoke

after call.invoke

loading report: 124 records read, 124 records loaded mirroring report: Sync to SPIDR
node 'http://spidrd.ngdc.nocaa.gov/axis/services/FileService' user 'userl' data file
'/var/www/html/dataexport/ws_dmedv_service 1129281489430 AAE9708M.WDC' table 'Geom'
format 'geomMinWdca' with options 'r' as 'moscow' SPIDR node
'http://spidrd.ngdc.noaa.gov/axis/services/FileService' returned: loading report: 124
records read, 124 records loaded

Loading ended in (27.406 sec)

MetadataClient

This client is used to retrieve inventory. Command line parameters for MetadataClient are listed
in Table 19.

If the SPIDR data table name is not set, MetadataClient returns a string, containing a space-
separated list of all available SPIDR table names. In all other cases it returns an XML string of
the following format:

<table name=...>
<station name=...>
<element name=...>
<date>YYYYMM</date>

<\element>

<\station>
<\table>

If station code or element name are not set, MetadataClient will return information for all
available stations or elements.

Table 19 — Command line arguments for MetadataClient

Parametr Description
(-h | --help) Prints usage help
(-1'| --link) <url> Sets the web-service URL
(-u | --user) <ums> Sets user name
(-p | --passwd) <maposn> Sets password
(-t | --table) <raGauma> Sets SPIDR table name
(-s | --station) <cramHrws> Sets station code
(-e | --element) <snement> Sets element name
(-d | --day) <menp> Sets a single day for the data request. <day> must be given

YYYYMMDD. If you need to obtain data within a time
interval, use d1 and d2 parameters.

(-d1 | --dayfrom) <genp> Sets upper boundary of the time interval. <day> must be
given as YYYYMMDD.
(-d2 | --dayto) <nenp> Sets lower boundary of the time interval. <day> must be

given as YYYYMMDD.

MetadataClient usage example:

Command:

> java spidr.export.MetadataClient -1
http://spidr.ngdc.noaa.gov/spidr/services/SpidrService -u userl -p passl -t Geom -s
KAK min -d 19980101

Output:

<table name="Geom">
<station name="KAK min">
<element name="D">
<date>199801</date>
</element>
<element name="F">
<date>199801</date>
</element>
<element name="H">
<date>199801</date>
</element>
<element name="72">
<date>199801</date>
</element>
</station>
</table>

Getting data with embedded clients. Usage example.

Typically, data retrieval with embedded clients involves two tasks:
e get inventory using MetadataClient;
e et data using SpidrClient.

Here we give an example of a Perl script, which retrieves all data in the “Geom” database for a
given day in WDC format. First it calls MetadataClient to get a list of available stations, then it
passes station codes to SpidrClient to retrieve the necessary data.

#!/usr/bin/perl
use XML::Simple;

die "Wrong number of arguments. Must be 1 argument - a day formatted like 19980223."
unless Q@ARGV;

my SclasspathElementDelimiter = ":"; # ':' for Linux, ';' for M$ Windows

my $serviceUrl = "http://spidr.ngdc.noaa.gov/spidr/services/SpidrService";
my $1ibDir = "/home/jjn/spidrexport/lib";

my StempMeta = "metadata.tmp"; # temporary file to keep downloaded metadata

my ($day) = @ARGV;
my $classpath = makeClassPath();

system("java -cp $classpath spidr.export.MetadataClient -1 $serviceUrl -u userl -p
passl -t Geom -d $day > StempMeta");

unless (open (INMETAFILE, S$tempMeta)) {
die "Can't open file S$tempMeta: $!\n";
}

my $xml = new XML::Simple;
my $data = $xml->XMLin ("S$tempMeta") ;

foreach my $station (keys %{$data->{"station"}}) {

system("java -cp S$classpath spidr.export.SpidrClient -1 $serviceUrl -u userl -p
passl -t Geom -s $station -f WDC -d $day");
}

sub makeClassPath {

opendir LIBDIR, $1ibDir;

return join $classpathElementDelimiter,
grep { -f }
map { "$1libDir/$ " }
grep { !/"\.\.28/}
grep { /\.jar/}
readdir LIBDIR;

Related information

1. http://www.w3.org/TR/ws-arch/ — Web Services Architecture. W3C Working Group Note.
2. http://msdn.microsoft.com/webservices/default.aspx — Web services and other distributed
technologies.

http://www.w3.org/TR/ws-arch/
http://msdn.microsoft.com/webservices/default.aspx

