
Space Physics Interactive Data Resource
SPIDR

Web-Services Guide

Version 2.10
March 2010

Contents

Contents ...2	

Introduction ...3	

Architectural Overview ...4	

SOAP-based API Specifics ...5	

FileService ...5	

SpidrService ..6	

Embedded clients for working with SPIDR web-services. ...10	

SpidrClient...11	

FileClient ...11	

MetadataClient ..12	

Getting data with embedded clients. Usage example. ...14	

Example SOAP Client ...14	

REST-based API Specifics..15	

Obtaining Images...15	

Obtaining Data...18	

Available Data Parameters to GetData..19	

Obtaining Metadata ...22	

Available Metadata Parameters to GetMetadata ...22	

Example REST Client ...23	

Related Information...23	

Introduction

This document is intended for software developers who are creating client applications
that connect to SPIDR, and for end users who wish to know more about these interfaces into
SPIDR (people using one of the existing Web Service clients for example). This document gives
an architectural overview of SPIDR’s web service implementation, to give a sense of what you
as a client developer or user are interacting with, as well as detailed information for each service
currently provided to document SPIDR’s API.

Due to the rapid growth of Internet technologies, more attention is being paid to the
development of distributed network applications. Many distributed technologies have existed in
the past, but none have became a universally accepted standard for distributed application
development. Web-services appeared as an alternative to prior technologies, and they allow for
easy and efficient integration between different applications across the network, and have
become a de-facto standard in two different incarnations; Simple Object Access Protocol
(SOAP), and Representational State Transfer (REST).

A Web service is a software system designed to support interoperable machine-to-

machine interaction over a network. SPIDR currently supports both of those types of Web
service interactions; REST and SOAP. In the case of SOAP, services have an interface described
in a machine readable format called the Web Service Definition Language, or WSDL (whiz-
dull). Other systems interact with the SOAP Web service in a manner prescribed by its
description using SOAP messages. These messages are typically conveyed using HTTP with an
XML serialization, in conjunction with other Web-related standards. For more information
regarding SOAP, see the “Related information” section. REST web services on the other hand
have no required definition document, but they lack the overhead necessary to implement a
system using the SOAP protocol. They tend to be favored by developers and users because of
their simplicity compared to SOAP. SOAP is still useful in situations where an existing tool can
create stubs or interactions based on a WSDL. For this reason as well as others, the two
interfaces commonly exist side by side when providing web service interfaces, and that is the
reason both are provided for SPIDR. One excellent example of why SOAP is still useful is the
Kepler workflow system, which can consume and aggregate SOAP services very nicely. For
more information regarding Kepler, SPIDR and SOAP, see SPIDR’s Kepler example here.

SPIDR uses web-services to connect to remote resources, and also provides its own web-

services, which allow other applications to use SPIDR as a data source. This allows SPIDR to
seamlessly be a part of an aggregation of a number of heterogeneous data sources. (Figure 1).

Figure 1 – SPIDR web-services

Architectural Overview

Currently SPIDR provides two separate SOAP web-services: SpidrService and
FileService, and several REST services.

An example URL for calling the SOAP web-service looks like the following:

SpidrService WSDL: http://spidr.ngdc.noaa.gov/spidr/services/SpidrService?wsdl

A geophysical data request to the web-service is made according to the following scheme

(see Figure 2). A SOAP request is passed to the JAX-RPC web-service and is translated into an
SQL statement by an overloaded method of a Java-class, specific for each database (the
appropriate class is chosen according to a configuration file). SQL query results are then
transformed into a data model object, which is subsequently serialized to a packed binary file to
be exported via HTTP protocol. The link to this file is passed to the client as a result of the web-
service operation. This link can be used to download the file, which will be used for further
processing, for example – for visualization.

Figure 2 – SpidrService operation

FileService WSDL: http://spidr.ngdc.noaa.gov/spidr/services/FileService?wsdl

Web Services using the SOAP protocol can be used to load new data into SPIDR

databases, in addition to the Web interface, client programs, e-mail, and also for synchronizing
databases on different SPIDR nodes (see Figure 3). When FileService is called, the uploaded file
is copied to the server, then it is processed and loaded into the database. For synchronization

purposes, one SPIDR node may call FileService on another node and so on until all mirrors have
been updated.

Figure 3 – FileService operation

 Loading data using Web service calls allows for various formats as input, which will
depend on the dataset being loaded. For example, you can load ionospheric data in SAO format,
but also load it in IIWG format. The formats are the same as those supported by the Web
interface. Obtaining data similarly allows for multiple formats, including XML, CSV, SPIDR
ASCII, URL to compressed ZIP file, and so on. The possibilities will be enumerated in the API
specific areas below.

SOAP-based API Specifics

FileService

Table 1 shows FileService methods and their corresponding use-cases.

Таблица 1 – FileService methods

Methods Use cases

loadData Load data in various formats into SPIDR table

• loadData

This method is used to load data in various formats into SPIDR table. It returns a string,
containing the loading log information. Its call arguments are listed in table 2.

Table 2 – loadData call arguments

Name Type Description

userID xsd:string User name
userType xsd:string User type
dataTable xsd:string SPIDR table name

dataFormat xsd:string Data format. Each SPIDR table has a list of predefined
formats, available for upload.

fileName xsd:string File name. Defines a local path to the uploaded file.
fileParams xsd:string Additional parameters
mirror xsd:boolean The flag, which controls mirroring to other SPIDR nodes.

SpidrService

Table 3 shows SpidrService methods and their corresponding use-cases.

Table 3 – SpidrService methods

Methods Use cases

getTables Obtain a list of SPIDR tables, belonging to a
given view-group.

getInventory Obtain inventory for a given table, element and
time interval.

getData

Export data for a given table, element, station
and time interval, in the form of a URL to a zip
file containing both the actual data, and any
station or other metadata

getDataStream

Export data for a given table, element, station
and time interval, in the form of a raw output
stream. This call does not include station
metadata files, and is designed for clients that
cannot easily deal with getData’s need to
download and unzip a file. It supports the
SPIDR ASCII, XML, and Matlab formats

getStations Obtain a list of stations, belonging to a given
SPIDR table.

getElementPeriods Get a list of available time periods for a given
element.

getStationPeriods Get a list of available time periods for a given
station

syncData Export data for synchronization with other
SPIDR nodes.

• getTables

This method is used to obtain a list of SPIDR tables, belonging to a given view-group. It
returns a string, containing a space-separated list of SPIDR table names. Its call arguments are
listed in table 4.

Table 4 – getTables call arguments

Name Type Description

viewGroup xsd:string SPIDR view-group name

Available view-groups are listed in table 5.

Table 5 – SPIDR view-groups

Name Description

GOES GOES - Space Environment Monitor
IMF IMF OMNI - Interplanetary Magnetic Field by Hour
IMFMin IMF - Interplanetary Magnetic Field by Minute
geomInd Geomagnetic Indices
SSN Solar Data
Iono Ionospheric Data
Geom Geomagnetic Minute Means
Geom_hr Geomagnetic Hourly Means
Geom_yr Geomagnetic Annual Means
Intermag Geomagnetic Minute Means for SWR
Geom_yrtab Geomagnetic Annual Means (tables)
SWR Clean SWR Geomagnetic Variations
Hpinoaa HPI NOAA Data
Hpidmsp HPI DMSP Data
CRI Cosmic Ray Data (preliminary)
CRI4096 Cosmic Ray Data (4096 format)
CRIGen Cosmic Ray Data (general format)
Rstn Radio Solar Telescope Network (RSTN)
sunImages Solar Images
DMSP DMSP Images Visible and IR
DMSP_SSJ4 DMSP SSJ4
events Space Weather Events
SXI GOES - Solar X-ray Imager
nightLight Nighttime Lights of the World
POES POES - Polar Orbiting Environmental Satellites
Amie AMIE derived Indices

• getInventory

This method is used to obtain inventory for a given table, element and time interval.
Returns a SOAP Array. The structure of the array is described in table 7. getInventory call
arguments are listed in table 6.

Table 6 – getInventory call arguments

Name Type Description

table xsd:string SPIDR table name
station xsd:string Station code
element xsd:string Element name
dateFrom xsd:string Time interval lower boundary as YYYYMMDD
dateTo xsd:string Time interval upper boundary as YYYYMMDD

Table 7 – getInventory returned array structure

Name Type Description

elem xsd:string Element name

numRecs xsd:int Number of records for a given month
stn xsd:string Station code
table xsd:string SPIDR table name
yrMon xsd:int Month as YYYYMM.
yrMon2 xsd:int --- same as yrMon ---

• getMetadata

Works the same as getInventory, but returns the following XML string:

<table name=...>
 <station name=...>
 <element name=...>
 <date>YYYYMM</date>
 <\element>
 ...
 <\station>
<\table>

• getData

This method is used to export data for a given table, element, station and time interval. It
returns a URL link to the exported file. Its call arguments are listed in table 8.
Table 8 – getData call arguments

Name Type Description

Table xsd:string SPIDR table name.
Stn xsd:string Station code
Elem xsd:string Element name
dayFromStr xsd:string Time interval lower boundary as YYYYMMDD
dayToStr xsd:string Time interval upper boundary as YYYYMMDD

format xsd:string
Export format. Allowed export formats are: ASCII, XML,
Matlab, IIWG (iononospheric data only), WDC (geomagnetic
data only)

samplingStr xsd:string Data sampling in minutes. 0 – minimal possible sampling.

• getDataStream

This method is used to export data for a given table, element, station and time interval. It
returns raw data in whichever format is specified in the call. Its call arguments are listed in table
8.1.
Table 8.1 – getDataStream call arguments

Name Type Description

spidrTable xsd:string SPIDR table name.
station xsd:string Station code
element xsd:string Element name
startDayAndTime xsd:string Time interval lower boundary as YYYYMMDD
stopDayAndTime xsd:string Time interval upper boundary as YYYYMMDD

format xsd:string Export format. Allowed export formats are: ASCII, XML,
Matlab

samplingRate xsd:string Data sampling in minutes. 0 – minimal possible sampling.

• getStations

This method is used to get a list of stations, belonging to a given SPIDR table. Retruns a
SOAP Array. The structure of the array is described in table 10. getStations call arguments are
listed in table 10.

Table 9 – getStations call arguments

Name Type Description

table xsd:string SPIDR table name

Таблица 10 – getStations returned array structure

Name Type Description

SType xsd:string SPIDR table name
lat xsd:float Station latitude (degrees)
lon xsd:float Station longitude (degrees)
meridianTime xsd:byte --- always 0 ---
name xsd:string Station name
stn xsd:string Station code

• getElementPeriods

This method is used to get a list of available time periods for a given element. Returns a
SOAP Array. The structure of the array is described in table 12. getElementPeriods call
arguments are listed in table 11.

Table 11 – getElementPeriods call arguments

Name Type Description

table xsd:string SPIDR table name

Table 12 – getElementPeriods returned array structure

Name Type Description

elem xsd:string Element name
numRecs xsd:int --- always 0 ---
stn xsd:string --- always null ---
table xsd:string SPIDR table name
yrMon xsd:int Time interval lower boundary as YYYYMMDD
yrMon2 xsd:int Time interval upper boundary as YYYYMMDD

• getStationPeriods

This method is used to get a list of available time periods for a given station. Returns a

SOAP Array. The structure of the array is described in table 14. getElementPeriods call
arguments are listed in table 13.

Table 13 – getStationPeriods call arguments

Name Type Description

table xsd:string SPIDR table name

Table 14 – getStationPeriods returned array structure

Name Type Description

elem xsd:string --- always null ---
numRecs xsd:int --- always 0 ---
stn xsd:string Station code
table xsd:string SPIDR table name
yrMon xsd:int Time interval lower boundary as YYYYMMDD
yrMon2 xsd:int Time interval upper boundary as YYYYMMDD

• syncData

This method is used for exporting data for synchronization with other SPIDR nodes.
Returns a SOAP Map, wrapped in a SOAP Vector. The keys and values of the returned map are
listed in table 16. syncData call arguments are listed in table 15.

Table 15 – syncData call arguments

Name Type Description

Table xsd:string SPIDR table name
Stn xsd:string Station code
Elem xsd:string Element name
dayFromStr xsd:string Time interval lower boundary as YYYYMMDD
dayToStr xsd:string Time interval upper boundary as YYYYMMDD
format xsd:string Export format
samplingStr xsd:string Data sampling in minutes. 0 – minimal possible sampling.

Table 16 – syncData returned keys and values

Key Value type Description

fileName xsd:string Local path to the exported file

dataType xsd:string Data format. Each SPIDR table has a list of predefined
formats, available for upload.

fileParams xsd:string Additional parameters

Returned values, described in table 16 are used as arguments for loadData method of
FileService on the remote SPIDR node.

Embedded clients for working with SPIDR web-services.

SPIDR includes three embedded clients for working with its native web-services. These
are SpidrClient, FileClient, and MetadataClient. After obtaining the latest spidr.jar from
SourceForge, they can be called from command prompt with using following commands:

> java spidr.export.SpidrClient <parameters>
> java spidr.export.FileClient <parameters>

> java spidr.export.MetadataClient <parameters>

Each client is described in details below.

SpidrClient

 This client is used for exporting data from SPIDR.

It downloads the exported file on the local machine and returns its name.
Command line parameters for SpidrClient are listed in table 17.

Table 17 – Command line parameters for SpidrClient

Parameter Description

(-h | --help) Prints usage help
(-l | --link) <url> Sets the web-service URL
(-u | --user) <name> Sets user name
(-p | --passwd) <password> Sets password
(-t | --table) <table> Sets SPIDR table name
(-s | --station) <station> Sets station code
(-e | --element) <elements> Sets element name
(-d | --day) <day> Sets a single day for the data request. <day>

must be given YYYYMMDD. If you need to
obtain data within a time interval, use d1 and
d2 parameters.

(-d1 | --dayfrom) <day> Sets upper boundary of the time interval.
<day> must be given as YYYYMMDD.

(-d2 | --dayto) <day> Sets lower boundary of the time interval.
<day> must be given as YYYYMMDD.

(-f | --format) <format> Sets export format. <format> may be one of
the following: ASCII, XML, Matlab, IIWG
(ionospheric data only), WDC (geomagnetic
data only)

(-ts | --timestep) <sampling> Sets data sampling in minutes.

SpidrClient usage example:

Command:

> java spidr.export.SpidrClient -l http://clust1.wdcb.ru/axis/services/SpidrService
-u user1 -p pass1 -t Geom -e X -s BOU -d1 19980101 -d2 19980102

Output:

spidr_Geom_BOU_X_19980101_19980102_1129879850751.txt.zip

FileClient

This client is used for loading data into SPIDR.

 Command line parameters for FileClient are listed in table 18.

Таблица 18 – Command line parameters for FileClient

Parameter Description

(-h | --help) Prints usage help
(-l | --link) <url> Sets the web-service URL
(-u | --user) <name> Sets user name
(-p | --passwd) <password> Sets password
(-t | --table) <table> Sets SPIDR table name
(-s | --source) <source> Sets data source code. This code is used for

logging purposes.
(-d | --data) <filename> Sets path to the uploaded file
(-f | --format) <format> Sets format of the uploaded file. Each SPIDR

table has a list of predefined formats, available
for upload.

(-o | --options) <options> Sets additional options. <options> may be one
of the following: “replace”, “insert”, “delete”.

FileClient usage example:

Command:

> java spidr.export.FileClient –l http://clust1.wdcb.ru/axis/services/FileService
-u user1 -p pass1 -t Geom –s dmedv –d D:/data/AAE9708M.WDC –f geomMinWdca –o r

Output:

Loading to SPIDR node 'http://clust1.wdcb.ru/axis/services/FileService' user 'user1'
data file 'D:\data\AAE9708M.WDC' format 'geomMinWdca' with options 'r' as 'dmedv'
before call.invoke
after call.invoke
loading report: 124 records read, 124 records loaded mirroring report: Sync to SPIDR
node 'http://spidrd.ngdc.noaa.gov/axis/services/FileService' user 'user1' data file
'/var/www/html/dataexport/ws_dmedv_service_1129281489430_AAE9708M.WDC' table 'Geom'
format 'geomMinWdca' with options 'r' as 'moscow' SPIDR node
'http://spidrd.ngdc.noaa.gov/axis/services/FileService' returned: loading report: 124
records read, 124 records loaded
Loading ended in (27.406 sec)

MetadataClient

This client is used to retrieve inventory.
Command line parameters for MetadataClient are listed in table 19.
If table name is not set MetadataClient returns a string, containing a space-separated list

of all available SPIDR table names. In all other cases it returns an XML string of the following
format:

<table name=...>
 <station name=...>
 <element name=...>
 <date>YYYYMM</date>
 <\element>
 ...
 <\station>
<\table>

If station code or element name are not set, MetadataClient will return information for all

available stations or elements.

Table 19 – Command line arguments for MetadataClient

Parameter Description

(-h | --help) Prints usage help
(-l | --link) <url> Sets the web-service URL
(-u | --user) <имя> Sets user name
(-p | --passwd) <пароль> Sets password
(-t | --table) <таблица> Sets SPIDR table name
(-s | --station) <станция> Sets station code
(-e | --element) <элемент> Sets element name
(-d | --day) <день> Sets a single day for the data request. <day>

must be given YYYYMMDD. If you need to
obtain data within a time interval, use d1 and
d2 parameters.

(-d1 | --dayfrom) <день> Sets upper boundary of the time interval.
<day> must be given as YYYYMMDD.

(-d2 | --dayto) <день> Sets lower boundary of the time interval.
<day> must be given as YYYYMMDD.

MetadataClient usage example:

Command:

> java spidr.export.MetadataClient –l http://clust1.wdcb.ru/axis/services/SpidrService
-u user1 -p pass1 -t Geom -s KAK_min -d 19980101

Output:

<table name="Geom">
 <station name="KAK_min">
 <element name="D">
 <date>199801</date>
 </element>
 <element name="F">
 <date>199801</date>
 </element>
 <element name="H">
 <date>199801</date>
 </element>
 <element name="Z">
 <date>199801</date>
 </element>
 </station>
</table>

Getting data with embedded clients. Usage example.

Typically, data retrieval with embedded clients involves two tasks:
• get inventory using MetadataClient;
• get data using SpidrClient.

Here we give a Perl script, which retrieves all data in the “Geom” database for a given

day in WDC format. First it calls MetadataClient to get a list of available stations, then it passes
station codes to SpidrClient to retrieve the necessary data.

#!/usr/bin/perl

use XML::Simple;

die "Wrong number of arguments. Must be 1 argument - a day formatted like 19980223."
unless @ARGV;

my $classpathElementDelimiter = ":"; # ':' for Linux, ';' for M$ Windows
my $serviceUrl = "http://spidrd.ngdc.noaa.gov/axis/services/SpidrService";
my $libDir = "/home/jjn/spidrexport/lib";
my $tempMeta = "metadata.tmp"; # temporary file to keep downloaded metadata

my ($day) = @ARGV;

my $classpath = makeClassPath();

system("java -cp $classpath spidr.export.MetadataClient -l $serviceUrl -u user1 -p
pass1 -t Geom -d $day > $tempMeta");

unless (open(INMETAFILE, $tempMeta)) {
 die "Can't open file $tempMeta: $!\n";
}

my $xml = new XML::Simple;

my $data = $xml->XMLin("$tempMeta");

foreach my $station (keys %{$data->{"station"}}) {
 system("java -cp $classpath spidr.export.SpidrClient -l $serviceUrl -u user1 -p
pass1 -t Geom -s $station -f WDC -d $day");
}

sub makeClassPath {
 opendir LIBDIR, $libDir;
 return join $classpathElementDelimiter,
 grep { -f }
 map { "$libDir/$_" }
 grep { !/^\.\.?$/}
 grep { /\.jar/}
 readdir LIBDIR;
}

Example SOAP Client

 The afforementioned Kepler system serves as an excellent client for using SPIDR's
SOAP services. Find more information here, and here.

REST-based API Specifics

Just like the SOAP interface, the REST interface provides the means to obtain data and
metadata, but it also has the ability to provide high quality image plots (PNG). REST calls are
very straight forward conceptually, and amount to constructing a URL with the appropriate fields

Data and images are available from the GetData call, and designated through a 'format'

parameter. Metadata is obtained from the GetMetadata call. There are details for all three, data,
plots, and metadata, below.

Creating a REST call for SPIDR consists of formulating your base URL, and then adding

the additional pieces you need to accomplish your desired goal.

The base URL will typically be http://spidr.ngdc.noaa.gov/spidr/servlet/. What you tack

on to that will vary based on whether you want data, metadata, or images, and for which
parameters and when.

Obtaining Images

 The following table defines and describes the available parameters.

Table 20 – GetData, image parameters

Parameter Description

Width Width of plot, in pixels. Optional. If not
specified, the plot is auto-scaled.

Height Height of plot, in pixels. Optional. If not
specified, the plot is auto-scaled

marks Optional. Allows one to specify non-default
attributes of a plot.
Allowed values: dots, points, none

representation Optional.
Allowed values: bars, line (default)

color Optional. Only applies to format=image
If not specified, SPIDR will choose.
A semi-colon delimited list (1-1 for param
items) of hexadecimal color definitions.
e.g.
param=foF2.BC840 => color=0x00ff00
param=foF2.BC840;foF2.WP937 =>
color=0xff00ff;0x00ff00

format Required. For image plotting, the only
available value is ‘image’

dateFrom Required. Defines the start time from which
to obtain data

dateTo Required. Defines the stop time to obtain data
until.

param Required. Defines the data set from which
data are obtained

Image Examples

The nice thing about RESTful web services is that examples can easily be provided through a
web browser. Here are several examples that illustrate some of the capabilities of the REST web
services.

A line plot of the foF2 ionospheric parameter for the Boulder ionosonde, with the following call
parameters

• format=image
• param=foF2.BC840
• dateFrom=20071225
• dateTo=20080101
• marks=none
• height=200

URL/call
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?format=image¶m=foF2.BC840&dateFrom
=20071225&dateTo=20080101&marks=none&height=200

Which produces the following image

The same parameter, for the same period of time, only for two stations this time, Boulder and
Wallops Island, with the following call parameters

• format=image
• param=foF2.BC840;foF2.WP937
• dateFrom=20071225
• dateTo=20080101
• marks=none
• height=200

URL/call
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?format=image¶m=foF2.BC840;foF2.WP9
37&dateFrom=20071225&dateTo=20080101&marks=none&height=200

Here’s a bar chart of KP, using the following parameters

• format=image
• param=index_kp
• dateFrom=20090924
• dateTo=20091001
• representation=bars
• height=200

URL/call
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?format=image¶m=index_kp&dateFrom=2
0090924&dateTo=20091001&representation=bars&height=200

And finally, a line plot with marks, for the same data as the other ionosonde examples, with the
following parameters (to help visualize outliers for example), and custom colors

• format=image
• param=foF2.BC840;foF2.WP937
• dateFrom=20071225
• dateTo=20080101
• marks=dots
• height=200
• color=0xff00ff;0x00ff00

http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?format=image¶m=foF2.BC840;foF2.WP9
37&dateFrom=20071225&dateTo=20080101&marks=dots&height=200&color=0xff00ff;0x00ff
00

Obtaining Data

The following table defines and describes the available parameters.

Table 21 – GetData data parameters

Parameter Description

format Required. For obtaining data, there are
several format options available currently,
and they change the behavior of the response
as well as the data given.

The available values are:

‘matlab’ – returns a URL to a zip file
containing data files formatted for use by
matlab applications

‘xml’ –returns a URL to a zip file containing
data in XML format

‘zip’ – returns a URL to a ZIP file containing
files in SPIDR’s proprietary ASCII format

‘ascii’ – returns a data stream containing the
requested data in SPIDR’s proprietary ASCII
format.

‘csv’ – returns a data stream containing the
requested data in CSV format, with the
following fields:

time, value, qualifier, description

not all fields are applicaple to all data sets
though.

dateFrom Required. Defines the start time from which
to obtain data

dateTo Required. Defines the stop time to obtain data
until.

param Required. Defines the data set from which
data are obtained. Full enumeration in the
next section.

Available Data Parameters to GetData
At present, only SPIDR’s time series data are available from the web service interfaces. If you
need access to imagery, DMSP visible and IR for example, you still need to use the web browser
interface. The parameter field consists of a triplet of ‘param.platform.section’. In the cases where
only one component of the triplet is defined, e.g. index_kp, no other pieces are needed or used,
‘param=index_kp’ is all that’s allowed. In other words, the other components of the triplet allow
you to narrow your results for datasets where narrowing makes sense. There are also a few
duplicates which exist to make the interface a bit more developer friendly. The mapping for
‘param=’ is below, but it is also available dynamically from the GetData service itself, via a call
to: http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?describe You can further query with a
parameter from the table below as a subsequent call to describe. The first call will guide you as
well.

The describe call allows you to drill down by providing a parameter for which you want more
information. For example, if you know you want the foF2 ionosphere parameter, but you don’t
know which stations are available, you can make a describe call to obtain the list of currently
available stations. If you know that you want foF2 and the BC840 station for example, you can
call describe with param=foF2.BC840 to find the available time range for that data set.

The GetData describe call supports three tiers of information. The first tier returns the available
parameters. e.g.
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?describe

The second tier returns available stations, based on a given parameter. e.g.
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?describe¶m=cri

The third tier supplies the available time range for a given parameter + station. e.g.
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?describe¶m=cri.BKSN

Data Examples

All of the data examples will focus on the ‘ascii’ and ‘csv’ formats. The default zip file format
doesn’t have much to show, since it merely responds with a URL from which you download the
file.

To begin, here’s a small chunk of Kp index data, in CSV format

• format=csv
• param=index_kp
• dateFrom=20090924
• dateTo=20091001

URL/call
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?format=csv¶m=index_kp&da
teFrom=20071225&dateTo=20080101

Which will give you something similar to the following if you open the URL in your web
browser.

The next example is the same data set, in SPIDR’s legacy proprietary ASCII format

• format=ascii
• param=index_kp
• dateFrom=20090924
• dateTo=20091001

URL/call
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?format=ascii¶m=index_kp&
dateFrom=20071225&dateTo=20080101

Which will give you something similar to the following if you open the URL in your web
browser.

If you’re writing a client application that will be consuming these data, the paradigm for reading
the data is the same. Any programming language or library that supports an HTTP GET is able
to make these calls and obtain and use the resulting data.

Obtaining Metadata
 The following table defines and describes the available parameters.

Table 22 – GetMetadata parameters

Parameter Description

param Required. Defines the document from which
metadata are obtained. The detailed mapping
of what is supported is below.

Available Metadata Parameters to GetMetadata

The available metadata parameters are still evolving based on what users want and need, but the
current list of supported items is the following:

theme, platform
geom, *
iono, *
cri, *

These are also available from a describe call to the GetMetadata service. e.g.
http://spidr.ngdc.noaa.gov/spidr/servlet/GetMetadata?describe

Just like with the GetData call, you can provide a parameter to the describe call to drill down and
obtain more specific information about specific stations. e.g.
http://spidr.ngdc.noaa.gov/spidr/servlet/GetMetadata?describe¶m=cri

Unlike data, the GetMetadata call doesn’t have a third tier of metadata for a theme + platform, as
it doesn’t pertain to metadata. Only data have an associated time range, which is what the third
tier supports. The GetMetadata call will accept such requests, but suggests that you probably
wanted the associated GetData call instead. e.g.
http://spidr.ngdc.noaa.gov/spidr/servlet/GetMetadata?describe¶m=cri.BKSN

In some cases there are differences between the theme/param in GetData and GetMetadata. For
example, ‘foF2’ (an ionospheric parameter) vs ‘iono’. The reason the metadata param value isn't
'foF2.BC840' is that foF2 isn't specific to the Boulder station. These parameters are designed to
allow you to obtain unique information about the data sets, and we are exploring what way might
be best to support the other param values, while still supplying useful information. These allow
you to request metadata about the particular resources you're currently obtaining data for. For
example, if you're requesting 'foF2.BC840' in a data call, you'll want 'iono.BC840' metadata. The
responses are all in XML format, adhereing to the schema they were entered into the virtual
observatory as, typically FGDC currently. In the future there may be more general, and more
specific keys, such as 1-1 mapping between data and metadata parameter names. If there are
formats, or other types of information you feel would be useful from the metadata service, please
contact us. We cannot improve in this area without input from the user community. Send email
to spidr-support@rt.ngdc.noaa.gov with your requests.

Metadata Examples

Here’s the metadata associated with the Boulder ionosonde station.

• param=iono.BC840

URL/call
http://spidr.ngdc.noaa.gov/spidr/servlet/GetMetadata?param=iono.BC840

Gives back an XML document containing all of the information pertinent to BC840.

Example REST Client

 There's an excellent client that consumes SPIDR's REST services written in IDL. If you
are an IDL programmer, and want SPIDR data, it's a great resource and starting point. It very
effectively creates an IDL wrapper and API around SPIDR's REST web services. It provides a
simpler abstraction for obtaining data the IDL way, which many scientific researchers are
familiar with.

Using this client as a starting point, or as the basis for further analysis is very straightforward.
Once you've obtained the code, incorporating it, and consequently SPIDR's data into your own
IDL applications is fairly easy.

For example, all it takes to obtain SPIDR data is the following one line of IDL:

IDL> spidr = spidr_get_data('xs.goes11', [2008,1,1,0,0,0], [2008,1,31,23,59,59], /UNIX_TIME, verbosity=5)

Thereafter, you can use 'spidr' as you would any other structure in your IDL. This client is
independently maintained, as is its documentation.

You can find more information here.

Related Information

1. http://www.w3.org/TR/ws-arch/ – Web Services Architecture. W3C Working Group Note.
2. http://msdn.microsoft.com/webservices/default.aspx – Web services and other distributed

technologies.

